Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	v	z	U_{eq}
Cd1	0	0	0	0.0318 (2)
Znl	0	1/2	1/4	0.0305 (3)
S1	-0.12450(11)	0.15280(11)	-0.3029 (3)	0.0340(3)
Cl	-0.0783 (4)	0.2734 (4)	-0.1177 (11)	0.0298 (8)
NI	-0.0480(4)	0.3596(3)	0.0064 (13)	0.0385 (8)

Table 2. Selected geometric parameters (Å, °)

Cd1—S1'	2.5640 (12)	Zn1—N1"	1.967 (5)
Cd1-S1"	2.5640 (12)	Zn1—N1`	1.967 (5)
Cd1S1	2.5640 (12)	Znl—Nl``	1.967 (5)
Cd1—S1 ^{III}	2.5640 (12)	S1C1	1.651 (5)
Zn1—N1	1.967 (5)	C1N1	1.153 (6)
\$1'-Cd1S1"	117.74 (6)	N1 ^w —Zn1—N1'	107.09 (15)
S1'-Cd1-S1	105.50(3)	NI-ZnI-NI	107.09 (15)
S1"-Cd1-S1	105.50(3)	N1 ¹¹ —Zn1—N1 ¹¹	114.3 (3)
S1'Cd1S1™	105.50(3)	N1`Zn1N1`'	107.09 (15)
S1 ^u -Cd1-S1 ^u	105.50(3)	C1-S1-Cd1	96.76 (15)
S1-Cd1-S1 ¹¹¹	117.74 (6)	N1C1S1	178.1 (4)
N1-Zn1-N1"	107.09 (15)	C1-N1-Zn1	175.2 (5)
N1—Zn1—N1	114.3 (3)		

Symmetry codes: (i) y, -x, -z; (ii) -y, x, -z; (iii) -x, -y, z; (iv) $\frac{1}{2} - y, \frac{1}{2} + x, \frac{1}{2} - z$; (v) -x, 1 - y, z; (vi) $y - \frac{1}{2}, \frac{1}{2} - x, \frac{1}{2} - z$.

Data collection: P3 (Nicolet, 1985). Cell refinement: P3. Data reduction: SHELXTL (Sheldrick, 1984). Program(s) used to solve structure: SHELXTL. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL.

This work was supported by grants from the State Key Program of China and the Natural Science Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1297). Services for accessing these data are described at the back of the journal.

References

- Balarew, C. & Duhlew, R. (1984). J. Solid State Chem. 55, 1-10.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.
- Nicolet (1985). P3. Data Collection Program. Version 81.3. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Ozutsumi, K., Takamuku, T., Ishiguro, S. & Ohraki, H. (1989). Bull. Chem. Soc. Jpn, 62, 1875–1879.
- Pearson, R. G. (1963). J. Am. Chem. Soc. 85, 3533-3548.
- Sheldrick, G. M. (1984). SHELXTL User's Manual. Revision 4.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Tian, Y. P., Duan, C. Y., Zhao, C. Y. & You, X. Z. (1997). Inorg. Chem. 36, 1247–1256.
- Yamaguchi, T., Yamamoto, K. & Ohtaki, H. (1985). Bull. Chem. Soc. Jpn, 58, 3235–3241.
- Yuan, D. R., Xu, D., Fang, Q., Yu, W. T. & Jiang, M. H. (1997). Appl. Phys. Lett. 70, 544–546.
- Zyss, J. (1991). Non-Linear Opt. 1, 1-17.

Acta Cryst. (1999). C55, 1395-1398

Polyphosphates de strontium $Sr(PO_3)_2$ formes β et γ

MOHSEN GRAIA, AHMED DRISS ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisie. E-mail: tahar.jouini@fst.rnu.tn

(Reçu le 23 avril 1998, accepté le 3 mars 1999)

Abstract

Two polymorphic phases of strontium polyphosphate were prepared by solid-state reactions. The structure of β -Sr(PO₃)₂ is a redetermination. The structure of γ -Sr(PO₃)₂ was solved and contains (PO₃)_n chains and SrO₈ polyhedra. (PO₃)_n chains cross the cell along the *a* direction. Their repeat unit is two PO₄ tetrahedra. SrO₈ polyhedra are connected by edge-sharing to form infinite chains, which are further interconnected by edge-sharing to form double chains parallel to **a**. The (PO₃)_n groups link these double chains to build three-dimensional networks.

Commentaire

On relève en bibliographie trois formes cristallines de polyphosphates de strontium: α -Sr(PO₃)₂ (Ropp *et al.*, 1959), β -Sr(PO₃)₂ (Durif *et al.*, 1972; Olbertz *et al.*, 1997; Jansen & Kindlery, 1997) et γ -Sr(PO₃)₂

(Ropp et al., 1959). L'affinement de la structure de la forme β par Olbertz et al. (1997) a conduit au facteur de reliabilité R(F) = 0,087. Une redétermination de la structure par Jansen & Kindlery la même année, a conduit aux facteurs de reliabilité R(F) = 0.053 et wR = 0,126. La redétermination de la structure de β -Sr(PO₃)₂ a permis d'améliorer ces valeurs [R(F) = 0,034 et wR = 0,086]. Cette structure est formée de chaînes polyphosphates $(PO_3)_n$ de période quatre et de rubans $(Sr_4O_{22})_n$ se développant selon l'axe **a**. Ces rubans sont des chaînes simples de polyèdres Sr(1)O₈ et Sr(2)O7 partageant des faces, assemblées latéralement en doubles chaînes par mises en commun d'arêtes (Fig. 1). Contrairement à la forme β de Sr(PO₃)₂, la forme γ n'a fait l'objet d'aucune étude structurale. Pourtant son existence a été signalée depuis 1959 (Ropp et al., 1959). La structure de γ -Sr(PO₃)₂ établie dans ce travail, possède une charpente tridimensionnelle mixte formée de tétraèdres PO₄ et de bipyramides SrO₈ à bases carrés distordus, partageant des sommets et des arêtes. Cet empilement est caractérisé par une alternance de couches anioniques, où se disposent des chaînes polyphosphates non liées entre elles, et de couches cationiques formées de rubans $(Sr_2O_{10})_n$ également non liés entre eux (Fig. 2). Les chaînes polyphosphates se

développent selon la direction a avec une période de deux tétraèdres (Fig. 2), et s'identifient au type (KPO₃)_x d'après la classification des chaînes polyphosphates (Jost, 1964). Les rubans $(Sr_2O_{10})_n$ sont formés de deux chaînes simples de polyèdres SrO₈ partageant des arêtes et se développant selon la direction a. Ces chaînes sont assemblées latéralement par mise en commun d'arêtes. La liaison entre couches est assurée par mise en commun d'atomes d'oxygène. Les tétraèdres $P(1)O_4$ et $P(2)O_4$ lient deux couches adjacentes de polyèdres SrO₈. Le premier tétraèdre partage un sommet (O2) triplement lié avec deux polyèdres appartenant à un même ruban et deux sommets (O1 et O6) avec respectivement deux rubans $(Sr_2O_{10})_n$ d'une même couche. Le second partage un sommet (O3) et une arête (O4-O6) avec deux rubans appartenant respectivement aux deux couches adjacentes. L'arête mise en commun fait intervenir l'oxygène liant (O6), il devient ainsi triplement lié. La comparaison de la structure de y- $Sr(PO_3)_2$ avec celle de β - $Sr(PO_3)_2$ montre que cette dernière diffère par plusieurs points: la périodicité des chaînes polyphosphates est de quatre tétraèdres, la connexion des polyèdres SrO₈ dans une chaîne se fait par mise en commun de faces, les atomes de strontium ne sont pas équivalents et leurs coordinences

Fig. 1. Projection selon la direction [100] du contenu de la maille de β-Sr(PO₃)₂. respectives sont sept et huit. Enfin, il n'y a pas d'atomes d'oxygène triplement liés, les atomes d'oxygène liants ne participant pas aux ponts mixtes P-O-Sr. Les valeurs des distances P-O et des angles O-P-O et P—O—P dans les tétraèdres PO₄ des formes β et γ de Sr(PO₃)₂ sont en bon accord avec celles habituellement rencontrées dans des anions polyphosphates (Jost, 1964). Les distances moyennes Sr-O sont 2,654 (4) Å pour γ -Sr(PO₃)₂ et Sr(1)—O = 2,607(3) et Sr(2)—O = 2,589 (3) Å pour β -Sr(PO₃)₂. Elles sont comprises dans l'intervalle des valeurs relevées en bibliographie, par exemple 2,572 (2) A (Averbuch-Pouchot & Durif, 1983) et 2,739 (3) A (Boutfessi et al., 1995). On relève, pour la phase γ quelques densités résiduelles légèrement supérieures à 1 e Å³, elles sont toutes situées à moins de 1,1 A de l'atome de strontium. Notons qu'au cours de ce travail nous avons relevé sur le diffractogramme de poudre attribué à la forme γ -Sr(PO₃)₂, publié par Ropp et al. (1959) des raies étrangères que nous avons indexées dans le système de la forme β .

Fig. 2. Projection selon la direction [100] du contenu de la maille de γ-Sr(PO₃)₂.

Partie expérimentale

Des monocristaux de β -Sr(PO₃)₂ et de γ -Sr(PO₃)₂ ont été obtenus à partir de mélanges de NH₄H₂PO₄, SrCl₂ et de Y₂O₃ pris respectivement dans les rapports molaires Y:Sr:P = 1:20:150 et Y:Sr:P = 2:40:100 et portés respectivement à 623 K et à 773 K pendant 16 h, puis refroidis lentement (0,2 K mn⁻¹).

Composé phase β

Données cristallines $Sr(PO_3)_2$ Mo $M_r = 245,56$ $\lambda =$

Mo $K\alpha$ radiation $\lambda = 0,71069$ Å

Monoclinique $P2_1/c$ a = 7,209 (1) Å b = 7,9527 (7) Å c = 17,414 (3) Å $\beta = 90.64 (1)^{\circ}$ V = 998,3 (2) Å³ Z = 8 $D_x = 3,268 \text{ Mg m}^{-3}$ D_m non-mesurée

Collection des données

Diffractomètre CAD-4 Balayage $\omega/2\theta$ Correction d'absorption: empirical ψ scans (North et al., 1968) $T_{\min} = 0,312, T_{\max} = 0,359$ 3664 réflexions mesurées 2894 réflexions indépendantes

Affinement

Affinement à partir des F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.086$ S = 1,1372894 réflexions 164 paramètres $w = 1/[\sigma^2(F_o^2)]$ $+ (0,0271P)^2$ + 3,6358P] où $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = -0.001$

Composé phase γ

Données cristallines $Sr(PO_3)_2$ $M_r = 245,56$ Monoclinique $P2_{1}/c$ a = 4,498 (1) Å b = 10,911 (3) Å c = 10,375 (3) Å $\beta = 91,56 (2)^{\circ}$ V = 509,0 (2) Å³ Z = 4 $D_x = 3,204 \text{ Mg m}^{-3}$ D_m non-mesurée

Collection des données

Diffractomètre CAD-4	739 réflexions avec
Balayage $\omega/2\theta$	$I > 2\sigma(I)$
Correction d'absorption:	$R_{\rm int} = 0,034$
correction empirique par	$\theta_{\rm max} = 24,96^{\circ}$
ψ scans (North <i>et al.</i> ,	$h = -5 \rightarrow 5$
1968)	$k = 0 \rightarrow 12$
$T_{\min} = 0.352, T_{\max} = 0.572$	$l = -12 \rightarrow 0$

Paramètres de la maille à l'aide de 25 réflexions $\theta = 11,62 - 14,89^{\circ}$ $\mu = 11,391 \text{ mm}^{-1}$ T = 293(2) KParallélipipède $0.18 \times 0.11 \times 0.09$ mm Incolore

2222 réflexions avec $I > 2\sigma(I)$ $R_{\rm int} = 0.045$ $\theta_{\rm max} = 29,97^{\circ}$ $h = -10 \rightarrow 1$ $k = -11 \rightarrow 1$ $l = -24 \rightarrow 24$ 1 réflexion de référence fréquence: 120 min variation d'intensité: 1,8%

 $\Delta \rho_{\rm max} = 0,970 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min}$ = -0,948 e Å⁻³ Correction d'extinction: SHELXL93 (Sheldrick, 1993) Coefficient d'extinction: 0,0024(4)Facteurs de diffusion des International Tables for Crystallography (Vol. C)

Mo $K\alpha$ radiation $\lambda = 0.71069 \text{ Å}$ Paramètres de la maille à l'aide de 25 réflexions $\theta = 7,50 - 17,77^{\circ}$ $\mu = 11,171 \text{ mm}^{-1}$ T = 293 (2) K Parallélipipède $0,15 \times 0,1 \times 0,05 \text{ mm}$ Incolore

944 réflexions mesurées 893 réflexions indépendantes

Affinement

$\Delta \rho_{\rm max} = 1,105 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1,116 \ {\rm e} \ {\rm \AA}^-$
Correction d'extinction
SHELXL93 (Sheldri
1993)
Coefficient d'extinctio
0,002 (2)
Facteurs de diffusion d
International Tables
Crystallography (Vo

$= -1.116 \text{ e} \text{ Å}^{-3}$ tion d'extinction:

1 réflexion de référence

fréquence: 120 min

variation d'intensité: 1,6%

ELXL93 (Sheldrick, 5) cient d'extinction: (2)rs de diffusion des rnational Tables for stallography (Vol. C)

Tableau 1. Paramètres géométriques (Å, °) pour phase γ

Sr—O1	2,431 (4)	P101	1.461 (4)
Sr—O2'	2,527 (4)	P1—O2	1,487 (5)
Sr—O4"	2,597 (4)	P1-05	1,590 (4)
Sr—O2 ^{III}	2,630 (4)	P1—O6	1,632 (4)
Sr—O3	2,651 (4)	P2—O4	1,478 (4)
SrO3 ^{IV}	2,710(4)	P2-03 ^{v1}	1,480(4)
Sr04`	2,769 (4)	P206"	1,604 (4)
Sr—O6"	2,921 (4)	P2—O5	1,605 (4)
O1-P1-O2	119,7 (3)	O4—P2—O6''	104,2(2)
01—P1—05	108.8 (2)	$O3^{vi}$ —P2—O6 ^{iv}	110,6(2)
O2—P1—O5	111,3 (2)	O4P2O5	110,0(2)
O1—P1—O6	111,7 (3)	O3 ^{v1} —P2—O5	109,8(2)
O2P1O6	106,4 (2)	06" - P205	99,0(2)
O5—P1—O6	96,5 (2)	P105P2	126,9(3)
O4P2O3 ^{vi}	121,0(3)	P2 ^{vn} —O6—P1	127,3(3)

Codes de symétrie: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) -x, 1 - y, -z; (iii) -x, z $y = \frac{1}{2}, \frac{1}{2} = z;$ (iv) x = 1, y, z; (v) -1 = x, 1 = y, -z; (vi) $-x, \frac{1}{2} + y, \frac{1}{2} = z;$ (vii) 1 + x, y, z.

La largeur de balayage est $(0,77 + 0,34tg\theta)^{\circ}$. Les intensités ont été corrigées des facteurs de Lorentz-Polarisation.

Tous les deux composés, collection des données: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); affinement des paramètres de la maille: CAD-4 EXPRESS; réduction des données: MolEN (Fair, 1990); programme(s) pour la solution de la structure: SHELXS86 (Sheldrick, 1990); programme(s) pour l'affinement de la structure: SHELXL93 (Sheldrick, 1993); logiciel utilisé pour préparer le matériel pour publication: SHELXL93.

Des documents complémentaires concernant cette structure peuvent être obtenus à partir des archives électroniques de l'UICr (Référence: GS1011). Les processus d'accès à ces archives sont donnés au dos de la couverture.

Références

- Averbuch-Pouchot, M. T. & Durif, A. (1983). Acta Cryst. C39, 811-812
- Boutfessi, A., Boukhari, A. & Holt, E. M. (1995). Acta Cryst. C51, 346-348
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

Durif, A., Bagieu-Beucher, M., Martin, C. & Grenier, J. C. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 146-148.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.

- Jansen, M. & Kindlery, N. (1997). Z. Kristallogr. 212, 141.
- Jost, K.-H. (1964). Acta Cryst. 17, 1539-1544.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Olbertz, A., Stachely, D., Svoboday, I. & Fuessy, H. (1997). Z. Kristallogr. 212, 135.
- Ropp, R. C., Aia, M. A., Hoffman, C. W. W., Veleker, T. J. & Mooney, R. W. (1959). Anal. Chem. pp. 1163–1166.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Université de Göttingen, Allemagne.

Acta Cryst. (1999). C55, 1398-1399

Sodium zinc hydroxide selenite, NaZn₂(OH)(SeO₃)₂

WILLIAM T. A. HARRISON^{*a*} AND MARK L. F. PHILLIPS^{*b*}

^aDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, and ^bGemfire Corporation, 2440 Embarcadero Way, Palo Alto, CA 94303, USA. E-mail: w.harrison@abdn.ac.uk

(Received 12 April 1999; accepted 6 May 1999)

Abstract

The title compound, sodium dizinc hydroxide bis-(selenite), NaZn₂(OH)(SeO₃)₂, contains a dense polyhedral network of octahedral ZnO₆, pyramidal SeO₃ and tetrahedral NaO₄ units $[d_{av}(Zn-O) = 2.120(2), d_{av}(Se-O) = 1.700(1)$ and $d_{av}(Na-O) = 2.316(2)$ Å]. It is isostructural with NaCo₂(OH)(SeO₃)₂.

Comment

 $NaZn_2(OH)(SeO_3)_2$ (Figs. 1 and 2) is isostructural with $NaCo_2(OH)(SeO_3)_2$ (Wildner, 1995). It is built up from a three-dimensional network of edge- and vertex-sharing ZnO_6 , SeO_3 and NaO_4 groups.

The Na1 atom, with site symmetry *m*, is tetrahedrally coordinated by four O-atom near neighbours $[d_{av}(Na-O) = 2.316 (2) \text{ Å}]$. Its bond valence sum (Brown, 1996) is 1.00, exactly as expected. The Zn1 (site symmetry \overline{I}) and Zn2 (site symmetry *m*) atoms are coordinated octahedrally by O atoms $[d_{av}(Zn1-O) = 2.102 (2)$ and $d_{av}(Zn2-O) = 2.138 (2) \text{ Å}]$. Both Se atoms have site symmetry *m* and display their characteristic pyramidal geometry $[d_{av}(Se1-O) = 1.699 (1)$ and $d_{av}(Se2-O) = 1.701 (1) \text{ Å}]$, with the fourth tetrahedral vertex assumed to be occupied by the Se^{IV} lone pair (Engelen *et al.*, 1996).

Of the five O atoms in the structure, O1 is bonded to two Zn and one Na atom, O2 and O4 are bonded to Na, Zn and Se, O3 is bonded to three Zn, and O5 is bonded to two Zn and one Se atom. The H atom is bonded to O3, completing a tetrahedron about the O atom. No

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

Fig. 1. Fragment of the NaZn₂(OH)(SeO₃)₂ structure (50% displacement ellipsoids) showing the bonding environments of the cations. Symmetry codes are as in Table 2.

Fig. 2. View down [010] of the $NaZn_2(OH)(ScO_3)_2$ structure, showing the pseudo-channels occupied by Na^+ cations.

hydrogen bond links with $d(H \cdot \cdot \cdot O) < 2.5$ Å arise from this situation.

The polyhedral connectivity in this phase is the same as that in NaCo₂(OH)(SeO₃)₂ (Wildner, 1995), resulting in chains of edge- and corner-sharing ZnO₆ groups propagating along [010] in a manner reminiscent of the α -Co₂SiO₄ structure (Morimoto *et al.*, 1974; Wildner, 1995). Se atoms (as selenite groups) crosslink these formal [Co/Zn₂O₇H]⁹⁻ chains in the [100] and [001] directions, resulting in small [010] channels occupied by the Na⁺ cations.